

6-1

Chapter 7 Function-based Particle Transport

7.1 Application of Dirac delta approximation to the forward transport
equation

NOTE: Throughout this section, to simplify the notation, I DO NOT use any

vector symbols. You need to remember that r r and  are position and

direction, respectively.

We begin with the integral transport equation:

 ()
()

()0

,

0

, , e , ,

R

tdR r R E

r E dR S r R E
  −  − 

 = −  

() (), , , ,s d dE r R E E r R E      +   −   → → −     (7-1)

NOTE: I have breezily skimmed over the mathematical difficulty of r and 

being vectors (i.e., 3 dimensions and 2 dimensions, respectively), so the Dirac

deltas for these variables would really consist of 3 Dirac deltas for space and 2

for direction. But, since the integration rules are the same—1 if inside the

domain of integration and 0 if outside—the complexity (that the 1 is really a

product of 1’s and the 0 a product including at least one zero) is not worth the

extra notation.

The physical meaning of this is that the flux is found from exponential transport (using the total

number of mean free paths in the distance R that lies between r and r’ at energy E) from all

source particles and scattered particles to all of the points in the system.

We start by changing the equation to one that is more appropriate for comparing to event-based

Monte Carlo. This is because “flux” is not an event that occurs at a specific place; it involves

particles moving from one place to another. So, we take the term in the brackets in (7-1) and give

it the name “emerging particles density,” i.e., the spatial, energy, and directional density of

particles “emerging”—either directly from the source or from scattering events. (These occur

with specific values of position, energy, and direction, so fit an “event-based” point of view.

() () () (), , , , , , , ,sr E S r E d dE r E E r E       =  +    → →   (7-2)

(It is unfortunate that the traditional symbol for this is the same as the traditional symbol for the

fission neutron energy distribution, but we have to keep up with the differences.)

The flux equation can then be written (by substituting (7-2) into (7-1)) as:

6-2

()
()

()0

,

0

, , e , ,

R

tdR r R E

r E dR r R E 
  −  − 

 = −   (7-3)

And then substituting (7-3) into (7-2) gives us an integral equation for the emerging particle

density:

() (), , , ,r E S r E  =  +

()
()

()0

,

0

, , e , ,

R

tdR r R E

sd dE r E E dR r R E
    −  − 

         → → −     (7-4)

We apply the Neumann procedure to deal with the flux appearing on both sides:

 () ()
0

, , , ,j

j

r E r E 


=

 = 
 (7-5)

where the 0th order equation is given by:

() ()0 , , , ,r E S r E  =  (7-6)

and the higher order terms are given by:

() ()
()

()0

,

1

0

, , , , e , ,

R

tdR r R E

sr E d dE r E E dR r R E 
    −  − 

+


       =    → → −     (7-7)

We can apply the stochastic approximations to the integrals of 7-6 and 7-7 to get what we have

been calling a “general” Monte Carlo algorithms (those with one or more PDF’s unspecified.

(Once all of the PDF’s are specified, we have a “specific” algorithm that is ready to be coded

into a computer program.)

0th order term

Starting with equation 7-4, we simply sample the source, giving us:

()
()
()

() () ()

() () ()

0 0 0

0 0 0 0

0 0 0

0 0 0 0

ˆ ˆˆ , ,
ˆ ˆˆ, ,

ˆ ˆˆ , ,

ˆ ˆˆ

S r E
r E r r E E

r E

 w r r E E

   


  


  − − −



= − − −

 (7-8)

where

6-3

()
()

0 0 0

0

0 0 0

ˆ ˆˆ , ,

ˆ ˆˆ , ,

S r E
w

r E


=


 (7-9)

 (j+1)st order term

We now proceed inductively. Given that the jth order term can be approximated using:

() () () ()ˆ ˆˆ, ,j j j j jr E w r r E E     − − − (7-10)

the (j+1)st term can be found. We begin by substituting 7-10 into 7-7 to get:

() ()1 , , , ,sr E d dE r E E +
    =    → →  

()

() () ()0

,

0

ˆ ˆˆe

R

tdR r R E

j j jdR w r R r E E  
    −  − 

   −  −  − −
  (7-11)

 Noting that the equivalence

()0
ˆ()f x x x − = ()0 0

ˆ ˆ()f x x x −

allows us to replace continuous variables (i.e., x in the previous equation) with the values that

make the Dirac delta go to zero, we can convert 7-11 into:

() ()
()

()0

ˆ ˆ,

1

0

ˆ ˆ ˆ ˆ, , , , e

R

t j jdR r R E

s j j j jr E w r E E dR r R r 
  −  − 

+


 =   → →  −  − (7-12)

We deal with the integral by sampling R get:

() ()
()

()
()

ˆ

0

ˆ ˆ,

1

eˆ ˆ ˆ ˆ ˆ, , , ,
ˆ

R

tdR r R E

sr E w r E E r R r
R

 


 −  − 

+



 =   → → −  − (7-13)

We now deal with the two remaining continuous variables (and) by sampling them and

simplifying to get:

()
()

()

()

()
() () ()

ˆ

0

ˆ ˆ ˆ ˆˆ ,

1 1

1 1 1

1 1

ˆ ˆ ˆ ˆ, , e ˆ ˆ ˆ ˆˆ, ,
ˆ ˆ ˆ,

R

tdR r R R E

s r E E
r E w r R r E E

E R
   

 

 −  +  − 

+ +

+ + +

+ +


  → →

  −  − − −


 (7-14)

6-4

We complete the inductive development by writing this as:

() () () ()1 1 1 1 1
ˆ ˆˆ, ,r E w r r E E   + + + + +  − − − (7-15)

where

()
()

() ()

ˆ
1

1 1 1

0

ˆ ˆˆ ,

1 1

1

1 1 1 1 1

1 1 1

ˆ ˆ ˆ ˆˆ , , e

ˆ ˆ ˆ,

ˆ ˆˆ ˆ

R j

t j j jdR r R E

s j j j j j

j j

j j j j j

j j j j

r E E
w w

E R

r r R

 

+

+ + + −  − 

+ +

+

+ + + + +

+ + +


  → →




 +
 (7-16)

Putting it together: Flux approximation

Combining the previous results into equation 7-5 gives us our final Monte Carlo estimate of the

emerging particle density:

() ()

() () ()

0

0

, , , ,

ˆ ˆˆ

j

j

j j j j

j

r E r E

 w r r E E

 

  



=



=

 = 

 − − −




 (7-17)

which is interpreted to mean:

() () () ()
1 0

1 ˆ ˆˆ, , lim
I

ji ji ji ji
I

i j

r E w r r E E
I

   


→
= =

 = − − − 
 (7-18)

where I have added an i index to count the histories; remember that j counts Neumann

(scattering) steps.

Because of the two infinity occurrences, this does not look very useful for implementation on a

computer. We take care of the first one by just resigning ourselves to the fact that limiting I to a

finite value will leave us with an approximation to (), ,r E  :

() () () () ()
1 0

1 ˆ ˆˆ, , , ,
I

I ji ji ji ji

i j

r E r E w r r E E
I

    


= =

    − − − 
 (7-19)

More surprising is the fact that the second infinity does not have to be approximated.

Equation 7-16 tells us that the sequence of jiw values build on each other multiplicatively; this

means that, once a given jiw becomes zero, all the weights for larger values of j) will also be

zero, so do not have to be approximated.

6-5

Therefore, dealing with the infinity can be accomplished by designing the algorithm so that the

weights will always (eventually at least) go to zero. This is usually done in one of two ways:

1. Choose one or more PDF’s so that a value of the random variable resulting in 0jiw = can

be chosen. (This sometimes happens “naturally” in analog algorithms.)

2. (“Russian roulette”) Introduce a statistically equivalent transformation of one or more jiw

values:

0 1

ji

ji

w
 with probability p

w p

 with probability p




 = 
 −

With those difficulties out of the way, we can proceed to translating the emerging particle

density into the flux values that we really want. Returning to the point of view of a single

history, we begin the process by substituting (7-17) into (7-3) to get:

()
()

() () ()

() ()
()

()

0

0

,

00

ˆ ˆ ˆˆ ,

0 0

ˆ ˆˆ, , e

ˆ ˆ ˆ ˆe

R

t

R

t j j j j

dR r R E

j j j j

j

dR r R R E

j j j j j

j

r E dR w r R r E E

 w E E dR r R r

   

  

  −  −  

=

  −  +  − 

=

  
  − − − − 

 

 


  − − −  −
 
  



 

 (7-19)

The term in brackets is a bit trick, since it contains two continuous variables, r and R .

The normal way to deal with this is to define the position vector r with coordinate axes with the

origin at ĵir and one of the orthonormal direction vectors to correspond to ˆ
ji . That is:

ˆ ˆ ˆ

ĵ j v wr r u v w= +  +  +  (7-20)

where the direction vectors ˆ
v and ˆ

w are chosen to be orthogonal to each other and to ˆ
j .

This gives us:

 () () () ()ˆ ˆ
ji jir R r u R v w   −  − = − (7-21)

Substituting this into (7-19) gives us:

()

()
() () () ()0

ˆ ˆˆ () ,

0

ˆ ˆe 0
, ,

0 0

u

t j jj jdR r u R E

j j j

j

w E E v w for u
r E

 for u

   

 −  + − 

=




 − −   
  




 (7-22)

6-6

Examination of this reveals that the sample fixes the values of , , ,E v and w through the Dirac

deltas, but lets u vary from 0 to infinity, so “scoring” along the ray that flows out of the point ˆ
jr

in the direction ˆ
j .

The simplest way to sample this is to select the variable u from 0 to infinity, giving us:

()

()

() () () () ()

ˆ

0

ˆ ˆˆ ˆ() ,

0

e ˆ ˆ ˆ, ,
ˆ()

u j

t j j jj jdR r u R E

j j j j

j j

r E w E E v w u u
u

     


 −  + − 



=



  − − − (7-23)

In our original coordinate system, this corresponds to:

()

()

() () ()

ˆ

0

ˆ ˆˆ ˆ() ,

0

e ˆ ˆ ˆ, ,
ˆ()

u j

t j j jj jdR r u R E

j j j

j j

r E w E E r r
u

   


 −  + − 



=



  − − − (7-24)

where

ˆˆ ˆ ˆ

j j jr r u = +  (7-25)

Although not required by the mathematics, it is usual to use ˆˆ() ()j ju R = (i.e., the same

selection as was used to find the next emerging particle site, giving us 1
ˆ

ĵr r += .

(Got here xxx)

7.2 General to specific forward algorithm
We will continue using the Equations from the previous section. The general Monte Carlo

algorithm of equations 7-9, 7-16, and 7-18 is turned into a specific algorithm by the selection of

particular PDF’s to use. Each PDF used must obey three rules:

1. The PDF must be non-negative for all points.

2. The integral of the PDF over its selection domain must be 1. (Integration of a function

over the complete problem domain will be denoted as (), ,f x y .)

3. The PDF must be non-zero for all values of its selection domain for which a non-zero

contribution to any tally is possible.

Analog algorithm

The simplest of these uses the natural PDFs, which leads to the “analog” algorithm. The PDF’s

associated with the analog algorithm are:

6-7

() ()
()

()
()

()

() ()
()

ˆ

0 0 0

0

ˆ

1 1

0

ˆ ˆˆ ,

0 0 0 0

1

ˆ ˆˆ ,

1 1 1

ˆ ˆˆ(, ,)ˆ ˆˆ(, ,)
ˆ ˆˆ(, ,)

ˆ ˆ ˆ ˆˆ , e

ˆ ˆ ˆ ˆˆ , ,
ˆ ˆ,

ˆˆ ,

ˆ ˆ ˆ ˆˆ , e

R

t

R

t j j j

s

dR r R E

t

s j j j

j

s j j

dR r R E

j t j j j

S r E
r E

S r E

R r R E

r E E
E

r E

R r R E








+ +

  −  + 

+

 −  + 

+ + +

 
  =

 


=  + 

  → →
 =




=  + 

 (7-20)

Substituting these PDF’s into equations 7-9 and 7-16 give Dirac weights of:

()
ˆ

0 0 0

0

ˆ ˆˆ ,

0
ˆ ˆˆ(, ,) 1 e

Rboundary

tdR r R E

iw S r E
  −  + 

 
 

=  − 
 
  (7-21)

and

()
()

()

ˆ

0

ˆ ˆˆ ,

1

ˆˆ , 1 e

ˆˆ ,

Rboundary

t j j jdR r R E

s j j

j j

t j j

r E

w w
r E

  −  + 

+

 
 

 − 
 
 =


 (7-22)

In most “analog” methods, the random walk is modified to keep the flux weights equal to the

inverse of the total cross section at the latest collision. Modifying the weight streams given by

equations 7-21 and 7-22 is accomplished in these algorithms with the following modifications (to

get rid of the numerator terms):

1. The total source strength term, ˆ ˆˆ(, ,)S r E  , is just set to 1 and the user is required to

know that the reported tallies are on a “per emitted source particle” basis (or the code

multiplies the tallies by a user-specified constant equal to the source strength).

2. The
()

ˆ

0 0 0

0

ˆ ˆˆ ,

1 e

Rboundary

tdR r R E  −  + 
 

 
− 

 
 

and
()

ˆ

0

ˆ ˆˆ ,

1 e

Rboundary

t j j jdR r R E  −  + 
 

 
− 

 
 

terms are replaced with

Russian roulette games with these survival probabilities, p. The resulting weight is then

either 1 or 0, corresponding physically to a test of whether or not the particle escapes the

problem geometry.

6-8

3. The () ()ˆ ˆˆ ˆ, ,s j j t j jr E r E  term is replaced with a Russian roulette game with this

survival probability. The resulting weight is then either 1 or 0, corresponding physically

to a test of whether the particle is scattered or is absorbed (ending the particle history).

7.3 Flux tallies using Dirac deltas
For a given history, the flux estimate is given by equation 7-17:

()
()

() () ()
0

ˆ ˆˆ, ,
ˆˆ ,

j

j j j

j t j j

w
r E r r E E

r E
   



=

  − − −



 (7-23)

where the variable j counts collisions, the weight is the particle weight at the time of the

collision, and the careted variables are the parameters of the particle ENTERING the collision.

With this notation laid out, the tally contributions for the history are found by just inserting this

into the tally integrals.

Cell-averaged tallies

For cell-averaged, flux-based tallies, the integral for a tally of type x is:

() ()
0 4

, , , ,x x

V

T dr dE R r E r E





=    
 (7-24)

Substituting the flux approximation gives us:

()
()0

ˆ ˆˆ , ,

ˆˆ ,

x j j j

x j

j t j j

R r E
T w

r E



=







 (7-25)

At first glance this looks a little fishy, since tallies generally are tied to a particular cell, and this

formula makes it looks like EVERY collision contributes to the tally in every cell (i.e., even if

not in the cell!). But, keep in mind that all spatial details of the tally (as well as energy and

direction) are the responsibility of the response function. If the tally is attached to a particular

cell (or group of cells), then (), ,xR r E must be equal to 0 outside the cell(s) of interest, taking

care of our problem.

Also, notice that if the response is a particular reaction type x, then we would have:

6-9

() ()ˆˆ ˆ, , Volume of interest
ˆ ˆˆ , ,

, otherwise0

x j j j

x j j j

r E r
R r E

 
 = 

 (7-26)

When this is substituted, we see that the contribution to the tally is the particle weight times the

probability of collision type x, as we would expect (knowing that a collision occurred).

NOTE: In case it is bothering you that the weight does not seem to be divided by

the cell volume—like it did for the cell flux contribution we looked at earlier, this

occurred earlier because the cell averaged flux is NOT the integrated flux over

the cell, but is the AVERAGE flux, so the flux weight must be divided by the cell

volume.

7.4 Application to adjoint transport equation
We begin with the integral transport equation that you derived in the previous section:

()
()

()0

,
* *

0

, , e , ,

R

tdR r R E

r E dR S r R E
  −  + 

 = +  
 (7-27)

() ()*, , , ,s d dE r R E E r R E     +   +  → → +   

We apply the Neumann procedure to deal with the flux appearing on both sides:

() ()* *

0

, , , ,
j

j

r E r E 


=

 = 
 (7-28)

where the 0th order equation is given by:

()
()

()0

0

,
* *

0

, , e , ,

R

tdR r R E

r E dR S r R E
  −  + 

 = +  
 (7-29)

and the higher order terms are given by:

()
()

()

()

0

,
*

1

0

*

, , e , ,

, ,

R

tdR r R E

j s

j

r E dR d dE r R E E

 r R E , j=0,1, ,





  −  + 

+


    =   +  → →

  +   

  

 (7-30)

We can apply the stochastic approximations to the integrals of 7-29 and 7-30 to get what we

have been calling a “general” Monte Carlo algorithms (those with one or more PDF’s

6-10

unspecified. (Once all of the PDF’s are specified, we have a “specific” algorithm that is ready to

be coded into a computer program.)

0th order term

Starting with equation 7-28, we first rewrite it with the changes of variable:

r r R

R R R

 = + 

 = − (7-31)

to get:

()
()

()0

,
* *

0

0

, , e , ,

R

tdR r R E

r R E dR S r E
   −  − 

 −   = 
 (7-32)

We next apply the Dirac Monte Carlo approximation to each of the variables on the right-hand-

side of 7-32:

() () ()

()
()

()
()

ˆ
0

0 0 0

0

0

*
* 0 0

0 0 0

0 0

ˆ ˆˆ ,
,

0

0 0

ˆ ˆˆ(, ,) ˆ ˆˆ(, ,)
ˆ ˆˆ(, ,)

e ˆe
ˆ

R

R
t

t

s

s s

dR r R E
dR r R E

S r E
S r E r r E E

r E

R R
R

  





  −  − 
  −  − 


    − − −






 − (7-33)

and substitute these into 7-32 to give:

()
()

() () ()
*

* 0
0 0 0

0 0 0

ˆ ˆˆ, ,
ˆ ˆ ˆˆ ,

s

t s

w
r R E r r E E

r R E
    +    − − −

 + 
 (7-34)

where

()
()

()

ˆ
0

0 0 0

0

ˆ ˆˆ ,
*

0 0 0 0 0*

0

0 0 0 0

ˆ ˆ ˆ ˆ ˆˆ ˆ(, ,) , e

ˆ ˆ ˆˆ(, ,)

R

tdR r R E

s t s

s s

S r E r R E
w

r E R 

  −  − 
  + 

=


 (7-35)

Using equation 7-31, this becomes:

()
()

() () ()
*

* 0
0 0 0 0

0 0

ˆ ˆˆ, ,
ˆˆ ,t

w
r E r r E E

r E
     − − −


 (7-36)

where:

6-11

0 0 0
ˆ ˆˆ

ŝr r R + 
 (7-37)

 (j+1)st order term

Given that the jth order term can be approximated using:

()
()

() () ()
*

* ˆ ˆˆ, ,
ˆˆ ,

j

j j j j

t j j

w
r E r r E E

r E
     − − −


 (7-38)

the (j+1)st term can be found. We begin by substituting 7-38 into 7-30 to get:

()
()

()

()
() () ()

() ()

0

0

,
*

1

0

*

ˆ ,
*

0

, , e , ,

ˆ ˆˆ
ˆˆ ,

ˆ ˆˆ , ,
e

R

t

R

t j

dR r R E

j s

j

j j j

t j j

dR r R E
s j j j

j

t

r E dR d dE r R E E

w
 r r E E

r E

r E E
 w dR



  

  −  + 

+

  −  − 


       +  → →

   −  − −


 → →




  

 ()
()ˆ

ˆˆ ,
j

j j

r R r
r E

 + −

 (7-39)

 (where I have again applied the changes of variable from 7-31).

If we again apply the Dirac Monte Carlo approximation, we get:

()

()
()

() ()

()
()

()
()

ˆ
1

1 1

0

0

1 1

1 1

1 1 1

ˆ ˆˆ ,
ˆ ,

1

1 1

ˆ ˆˆ , ,

ˆ ˆ ˆ ˆˆ , ,
ˆ ˆ

ˆ ˆ,

e ˆe
ˆ

R j

R
t j j j

t j

s j j j

s j j j j j

j j

j j j

dR r R E
dR r R E

j

j j

r E E

r E E
E E

E

R R
R

 





+

+ +

+ +

+ +

+ + +

 −  − 
 −  − 

+

+ +

 → →

  → →
 − −






 −

 (7-40)

we can substitute these into Equation 7-39 to get:

()
()

() () ()
*

1*

1 1 1 1

1 1

ˆ ˆ ˆ, ,
ˆˆ ,

j

j j j j

t j j

w
r E E E r r

r E
   

+

+ + + +

+ +

  − − −


 (7-41)

where:

6-12

()
()

()

() ()

ˆ
1,

1 1

0

ˆ ˆˆ ,

1 1* *

1

1 1 1 1 1

1 1 1

ˆ ˆ ˆ ˆˆ , , e

ˆ ˆ ˆ ˆˆ , ,

ˆ ˆˆ ˆ

R j i

t j j jdR r R E

s j j j j j

j j

t j j j j j j j

j j j j

r E E
w w

r E E R

r r R

 

+

+ + −  − 

+ +

+

+ + + + +

+ + +


  → →


 

 +
 (7-42)

Putting it together: Flux approximation

Combining the previous results into equation 7-28 gives us our final Monte Carlo adjoint flux

approximation:

() ()

()
() () ()

* *

0

*

0

, , , ,

ˆ ˆˆ
ˆˆ ,

j

j

j

j j j

j t j j

r E r E

w
 r r E E

r E

 

  



=



=

 = 

 − − −





 (7-43)

which is interpreted to mean:

()
()

() () ()
*

*

1 0

1 ˆ ˆˆ, , lim
ˆˆ ,

I
ji

ji ji ji
I

i j t ji ji

w
r E r r E E

I r E
   



→
= =

 = − − −


 
 (7-44)

(where I have added an i index to count the histories.)

Because of the two infinity occurrences, this does not look very useful for implementation on a

computer. We take care of the first one by just resigning ourselves to the fact that limiting I to a

finite value will leave us with an approximation to ()* , ,r E  :

() ()
()

() () ()
*

* *

1 0

1 ˆ ˆˆ, , , ,
ˆˆ ,

I
ji

I ji ji ji

i j t ji ji

w
r E r E r r E E

I r E
    



= =

    − − −


 
 (7-45)

More surprising is the fact that the second infinity does not have to be approximated.

Equation 7-42 tells us that the sequence of *

jiw values build on each other multiplicatively; this

means that, once a given *

jiw becomes zero, all the weights for larger values of j) will also be

zero, so do not have to be approximated.

6-13

The algorithm has to be designed so that the weights will always go to zero. This is usually done

in one of two ways:

1. Choose one or more PDF’s so that a value of the random variable resulting in * 0jiw = can

be chosen. (This sometimes happens “naturally” in analog algorithms.)

2. (“Russian roulette”) Introduce a statistically equivalent transformation of one or more *

jiw

values:

*

0 1

ji

ji

w
 with probability p

w p

 with probability p




 = 
 −

7.5 Specific adjoint algorithm
As for the forward equation, the general Monte Carlo algorithm of equations 7-35, 7-42, and 7-

44 is turned into a specific algorithm by the selection of particular PDF’s to use. Some of the

considerations explored Section 7.2 apply to the adjoint flux as well (e.g., escape), but,

unfortunately, the way that the total cross section in the transport PDF combined nicely with the

total scattering cross section in the denominator of the scattering PDF does not happen in adjoint.

This has the effect of making the weights in the adjoint formulation jump around much more

than in the forward algorithm.

I will give you the opportunity to explore this in the homework problem 7-2.

7.6 Adjoint tallies
Adjoint tallies are simple Monte Carlo estimates of integrals, just like in the forward. For the

most part, though, adjoint tallies are restricted to flux profiles and k-effective eigenvalues.

Chapter 7 Exercises

7-1. Research use of the adjoint flux in Nuclear Engineering and prepare a short

(< 5 page) report.

7-2. Work out the specific adjoint algorithm that comes from utilizing the forward

flux as an importance function in the adjoint Monte Carlo transport solution.

(I will be particularly impressed if you can explain the physical significance

of doing this.)

7-3. Research and explain how k-effective estimates are combined in MCNP.

(MCNP calculates k-effective 3 ways using three different flux estimators

and then combines them. How does it combine them?)

6-14

7-4. Research fictitious scattering (also called delta scattering and Woodcock

scattering) and prepare a short (< 5 page) report.

7-5. Research the 10 statistical tests in MCNP and prepare a short (< 5 page)

report.

7-6. Research use of the Weilandt procedure for fission site convergence and

prepare a short (< 5 page) report.

7-7. Research use of Shannon entropy for fission site convergence and prepare a

short (< 5 page) report.

6-1

Answers to selected exercises

Chapter 7

(none)

first rewrite it with the changes of variable:

r r R

R R R

 = − 

 = − (7-5)

to get:

()
()

()0

,

0

0

, , e , ,

R

tdR r R E

r E dR S r E
   −  + 

 = 
 (7-6)

The direction and energy of the flux is identical to those variables in the source—only the

position has changed. The new position relates to the position, direction, and distance through

the first equation of (7-5) rearranged a bit:

r r R= + 
 (7-6a)

This is a bit more complicated than the examples we saw in the previous chapter, but the

principles are the same: Each of the independent variables on the right hand side are

approximated (even though they are not involved in the integral).

An additional notational consideration is introduced for this situation in which we do NOT

immediately “integrate out” a substituted Dirac delta, we take a short cut and anticipate the effect

of the impending integration by replacing the continuous variable with the selected point. That

is, once we introduce a Dirac delta, ()0
ˆx x − , then all occurrences of the variable x are replaced

with 0x̂ . This is mathematically justifiable because:

1. There is nothing that can be done to translate a Dirac delta into a usable value except

integration; and

2. There is no difference between the results of integrating ()0
ˆ()f x x x − and the results of

integrating ()0 0
ˆ ˆ()f x x x − .

We start by applying the Dirac Monte Carlo approximation to each of the dependent variables of

the source:

6-2

() () ()

() () ()

0 0
0 0

0 0

0 0

ˆ ˆˆ(, ,) ˆ ˆˆ(, ,)
ˆ ˆˆ(, ,)

ˆ ˆˆ

s
s

s s

s s

S r E
S r E r r E E

r E

 w r r E E

  


  


   − − −



= − − −

(7-6b)

Substituting this approximation into (7-6) to get:

()
()

() () ()
0 0

0

ˆ ˆˆ ,

0 0 0

0

ˆ ˆˆ, , e

R

t sdR r R E

s sr E w dR r r E E   
  −  + 

  − − − (7-7)

To deal with the integral over R, we approximate:

()
()

()
()

ˆ
0

0 0 0

0

0

ˆ ˆˆ ,
,

0

0 0

e ˆe
ˆ

R

R
t

t

dR r R E
dR r R E

R R
R




  −  + 
  −  + 




 −

and substitute this into 7-6 to give:

()
()

() () ()0
0 0 0

0 0 0

ˆ ˆˆ, ,
ˆ ˆ ˆˆ ,

s

t s

w
r E r r E E

r R E
     − − −

 + 
 (7-8)

where

()
()

()

ˆ
0

0 0

0

ˆ ˆˆ ,

0 0 0

0

0

ˆ ˆ ˆˆ , e

ˆ

R

t sdR r R E

s t sw r R E
w

R

 −  + 
 + 

=

 (7-9)

[NOTE: The division of the weight by the total cross section in Equation 7-8 above, is

traditional practice. This represents the weight of the particle BEFORE the collision at point

0 0
ˆ ˆ

ŝr R+  ; use of this factor allows the weights to remain equation to 1.000 for the traditional

“analog” Monte Carlo technique.]

Using equation 7-5, this becomes:

()
()

() () ()0
0 0 0 0

0 0

ˆ ˆˆ, ,
ˆˆ ,t

w
r E r r E E

r E
     − − −


 (7-10)

where:

0 0 0 0
ˆ ˆˆ ˆr r R + 

(7-11)

